Răspuns :
Răspuns:Matematica (și matematici[1]) este în general definită ca știința ce studiază relațiile cantitative, modelele de structură, de schimbare și de spațiu. În sens modern, matematica este investigarea structurilor abstracte definite în mod axiomatic folosind logica formală.
Structurile anume investigate de matematică își au deseori rădăcinile în științele naturale, cel mai adesea în fizică. Matematica definește și investighează și structuri și teorii proprii, în special pentru a sintetiza și unifica multiple câmpuri matematice sub o teorie unică, o metodă ce facilitează în general metode generice de calcul. Ocazional, matematicienii studiază unele domenii ale matematicii strict pentru interesul abstract exercitat de acestea, ceea ce le transformă într-o abordare mai degrabă legată de artă decât de știință.
Din punct de vedere istoric, ramurile majore ale matematicii au derivat din necesitatea de a face calcule comerciale, de a măsura terenuri și de a predetermina evenimente astronomice cu scopuri agriculturale. Aceste domenii specifice pot fi folosite pentru a delimita în mod generic tendințele matematicii până în ziua de astăzi, în sensul delimitării a trei tendințe specifice: studiul structurii, spațiului și al schimbărilor.
Studiul structurii se bazează în mod generic pe teoria numerelor: inițial studiul numerelor naturale, numere pare, numere impare apoi numere întregi, continuând cu numere raționale și în sfârșit numere reale, întotdeauna corelate cu operațiile aritmetice între acestea, toate acestea făcând parte din algebra elementară. Investigarea în profunzime a acestor teorii și abstractizarea lor a dus în final la algebra abstractă care studiază printre altele inele și corpuri, structuri care generalizează proprietățile numerelor în sensul obișnuit. Conceptul indispensabil în fizică de vector, generalizat în sensul de spațiu vectorial și studiat în algebra lineară este comun studiului structurii și studiului spațiului.
Studiul spațiului pornește în mod natural de la geometrie, începând de la geometria euclidiană și trigonometria familiară în trei dimensiuni și generalizată apoi la geometrie neeuclidiană, care joacă un rol esențial în teoria relativității. O mulțime de teorii legate de posibilitatea unor construcții folosind rigla și compasul au fost încheiate de teoria lui Galois. Ramurile moderne ale geometriei diferențiale și geometriei algebrice abstractizează studiul geometriei în direcții distincte: geometria diferențială accentuează uzul sistemului de coordonate și al direcției, pe când geometria algebrică definește obiectele mai degrabă ca soluții la diverse ecuații polinomiale. Teoria grupurilor investighează conceptul de simetrie în mod abstract, făcând legătura între studiul structurii și al spațiului. Topologia face legătura între studiul spațiului și studiul schimbărilor, punând accent pe conceptul continuității.
Studiul schimbării este o necesitate mai ales în cazul științelor naturale, unde măsurarea și predicția modificărilor unor variabile este esențială. Calculul diferențial a fost creat pentru acest scop, pornind de la definiția relativ naturală a funcțiilor dintre diverse dimensiuni și rata lor de schimbare în timp, metodele de rezolvare ale acestora fiind ecuațiile diferențiale. Din considerente practice, este convenabil să se folosească numerele complexe în această ramură.
O ramură importantă a matematicii aplicate este statistica, aceasta utilizând teoria probabilității care facilitează definirea, analiza și predicția a diverse fenomene, și care este folosită într-o multitudine de domenii.
Explicație pas cu pas: La inceputuri, matematica era folosita pentru calcule primare si gestiunea recoltelor. In acele timpuri se acorda o atentie deosebita cultului diferitelor zeitati, iar matematica era folosita si in citirea stelelor.
Prima data s-au folosit adunarea si scaderea, iar apoi s-au inventat inmultirea si impartirea. Se poate spune ca dezvoltarea comertului si nevoia oamenilor de a schimba marfuri au dus la aparitia numerelor si a matematicii care a evoluat ulterior ajungand la ceea ce este astazi.
Mai tarziu, in anii 300-200 inaintea erei noastre, in Grecia au aparut doua noi ramuri ale matematicii: aritmetica si geometria.