Răspuns :
sin(x/2) + cos(x) = 0
sin(x/2) + [1 - 2sin²(x/2)] = 0
2sin²(x/2) - sin(x/2) - 1 = 0
[2sin(x/2) + 1][sin(x/2) - 1] = 0
sin(x/2) = -1/2 or sin(x/2) = 1
sin(x/2) + [1 - 2sin²(x/2)] = 0
2sin²(x/2) - sin(x/2) - 1 = 0
[2sin(x/2) + 1][sin(x/2) - 1] = 0
sin(x/2) = -1/2 or sin(x/2) = 1
sin(x/2) + cos(x) = 0
sin(x/2) + [1 - 2sin²(x/2)] = 0
2sin²(x/2) - sin(x/2) - 1 = 0
[2sin(x/2) + 1][sin(x/2) - 1] = 0
sin(x/2) = -1/2 or sin(x/2) = 1
sin(x/2) + [1 - 2sin²(x/2)] = 0
2sin²(x/2) - sin(x/2) - 1 = 0
[2sin(x/2) + 1][sin(x/2) - 1] = 0
sin(x/2) = -1/2 or sin(x/2) = 1