1. x^2 >= 0, oricare ar fi x nr. real si, 11 > 0 => x^2 + 11 > 0, oricare ar fi nr. real x;
2. fie x^2 + x + 2 =y => expresia ta devine echivalenta cu, ( y + 2 )y + 1 = y^2 + 2y + 1 =
( y + 1 ) ^ 2 >=0, oricare ar fi nr. natural y;
3. 10x < = x^2 + 25 <=> 0 <= x^2 - 10x + 25 <=> ( x - 5 )^2 >= 0; adevarat;
4. a) m = -3 , ecuatia ta devine -4x - 2x + 6 = x - 3 <=> - 6x + 6 = x - 3 <=> - 7x = -9 <=> x = 9 / 7;
b) Rezolvam ecuatia originala: mx - x - 2x + 6 = x + m <=> x( m - 4 ) = m - 6;
Daca m = 4 => x * 0 = -2 <=> 0 = -2, fals; atunci, ecuatia ta nu are nici o radacina reala pentru m = 4.
Bafta!