a) 1/n - 1/(n+1) = (n+1)/n(n+1) - n/n(n+1) = (n+1-n) /n(n+1) = 1 /n(n+1)
b) 1/1 ×2 + 1 /2×3 + 1/ 3×4 +........... +1 /2013×2014 = 1/1 - 1/2 + 1/2 -1/3 +1/3 -1/4 +1/4 -1/5 +............+ 1/2013 - 1/2014 = 1 - 1/2014 = 2013 /2014
c) 1/n - 1/(n+m) = (n+m)/(n+m).n - n/ n(n+m) = (n+m -n) /n(n+m) = m/n(n+m)
d) 3/2.5 = 1/2 - 1/5
3/5.8 = 1/5 - 1/8
3 /8.11= 1/8 - 1/11
..............................
3/2012.2015 = 1/2012 - 1/2015 ⇒ S= 1/2 - 1 2015 = 2013/2015
e) 4/1.5 = 1/1 - 1/5
4/5.9 = 1/5 - 1/9
4/9.13 = 1/9 - 1/13
................................
4 /2013.2017 = 1/2013 - 1/2017 ⇒ S = 1- 1/2017 = 2016/2017