cum se calculeaza logaritmi cu baza diferita cum ar fi log₂ (x+1)+ log₄ (x+1)+ log₈ (x+1)= 22

Răspuns :

     Ca sa calculezi logaritmii cu baze diferite trebuie sa ii schimbi in aceeasi baza. Acest lucru se poate realiza cu urmatoarea formula : [tex]log_{n}a = \frac{log_{m}a }{log_{m}n } [/tex] ; m fiind baza in care doresti sa schimbi logaritmul
   
log₂ (x+1)+ log₄ (x+1)+ log₈ (x+1)= 22
Prima oara pui conditia de existenta : x+1 > 0 
⇒ x > -1 ⇒ x∈(-1;+∞)
Dupa aduci logaritmii in aceeasi baza, de obicei in cea mai mica, si calculezi.
   log₂ (x+1)+[tex]\frac{log_{2}(x+1)}{log_{2}4} + \frac{log_{2}(x+1)}{log_{2}8} [/tex] = 22
   log₂ (x+1)+[tex]\frac{log_{2}(x+1)}{log_{2}2^{2} } + \frac{log_{2}(x+1)}{log_{2}2^{3}} [/tex] =22
   log₂ (x+1)+ [tex]\frac{log_{2}(x+1)}{2log_{2}2} + \frac{log_{2}(x+1)}{3log_{2}2} [/tex] =22
   log₂ (x+1)+ [tex]\frac{log_{2}(x+1)}{2} + \frac{log_{2}(x+1)}{3} [/tex] =22
Aduci la acelasi numitor si o sa obtii : 
     6log₂ (x+1)+3log₂ (x+1)+2log₂ (x+1) =22·6
     11log₂ (x+1) =132
     log₂ (x+1) =132/11
     log₂ (x+1) =12
     x+1 = 2¹² = (2²)⁶ = 4⁶ = (4²)³ = 16³ = 4096
     x+1 = 4096 ⇒ x = 4095 ∈ (-1;+∞)