Determinați numerele reale a și b ,știind că a la 2 +b la 2 -2a+6b+10=0

Răspuns :

a^2 +b^2 -2a+6b+10=0 =>a^2-2a+1+b^2+6b+9=0(pe zece l-am scris ca 1 +9 ca sa ma ajute la formula)=>(a-1)^2+(b+3)^2=>a-1=0 sau b+3=0
                                                     a=1 si b=-3
 a²+b² -2a+6b+10=0
=> a²-2a+1+b² +6b+9=0
=> (a-1)²+(b+3)²=0
=> Suma a doua patrate (numere pozitive este 0=> ca numerele sunt 0=>)
=> a-1=0
     b+3=0
=> a=1; b=-3