Răspuns :
Fie E si F proiectiile punctelor B si A pe dreapta CD.
ABEF - dreptunghi⇒EF=8 cm
ΔBEC≡ΔAFD, sunt si isoscele, deci BE=CE=x⇒x=10√2 cm (cu teorema lui Pitagora sau cu sin45)
Deci CD=10√2+8+10√2=4(2+5√2) cm
[tex]P_{ABCD}=48+8+20\sqrt2=4(14+5\sqrt2)\ cm[/tex]
[tex]A_{ABCD}=\dfrac{(AB+CD)\cdot BE}{2}=\dfrac{(16+20\sqrt2)\cdot10\sqrt2}{2}= 40(5+2\sqrt2)\ cm^2[/tex]
ABEF - dreptunghi⇒EF=8 cm
ΔBEC≡ΔAFD, sunt si isoscele, deci BE=CE=x⇒x=10√2 cm (cu teorema lui Pitagora sau cu sin45)
Deci CD=10√2+8+10√2=4(2+5√2) cm
[tex]P_{ABCD}=48+8+20\sqrt2=4(14+5\sqrt2)\ cm[/tex]
[tex]A_{ABCD}=\dfrac{(AB+CD)\cdot BE}{2}=\dfrac{(16+20\sqrt2)\cdot10\sqrt2}{2}= 40(5+2\sqrt2)\ cm^2[/tex]